simple brownian diffusion an introduction to the standard theoretical models

Download Book Simple Brownian Diffusion An Introduction To The Standard Theoretical Models in PDF format. You can Read Online Simple Brownian Diffusion An Introduction To The Standard Theoretical Models here in PDF, EPUB, Mobi or Docx formats.

Simple Brownian Diffusion

Author : Daniel Thomas Gillespie
ISBN : 9780199664504
Genre : Science
File Size : 50. 85 MB
Format : PDF, ePub, Docs
Download : 487
Read : 531

Download Now Read Online


Brownian diffusion, the motion of large molecules in a sea of very many much smaller molecules, is topical because it is one of the ways in which biologically important molecules move about inside living cells. This book presents the mathematical physics that underlies the four simplest models of Brownian diffusion.

Louis Bachelier S Theory Of Speculation

Author : Louis Bachelier
ISBN : 1400829305
Genre : Business & Economics
File Size : 58. 13 MB
Format : PDF, ePub
Download : 598
Read : 830

Download Now Read Online


March 29, 1900, is considered by many to be the day mathematical finance was born. On that day a French doctoral student, Louis Bachelier, successfully defended his thesis Théorie de la Spéculation at the Sorbonne. The jury, while noting that the topic was "far away from those usually considered by our candidates," appreciated its high degree of originality. This book provides a new translation, with commentary and background, of Bachelier's seminal work. Bachelier's thesis is a remarkable document on two counts. In mathematical terms Bachelier's achievement was to introduce many of the concepts of what is now known as stochastic analysis. His purpose, however, was to give a theory for the valuation of financial options. He came up with a formula that is both correct on its own terms and surprisingly close to the Nobel Prize-winning solution to the option pricing problem by Fischer Black, Myron Scholes, and Robert Merton in 1973, the first decisive advance since 1900. Aside from providing an accurate and accessible translation, this book traces the twin-track intellectual history of stochastic analysis and financial economics, starting with Bachelier in 1900 and ending in the 1980s when the theory of option pricing was substantially complete. The story is a curious one. The economic side of Bachelier's work was ignored until its rediscovery by financial economists more than fifty years later. The results were spectacular: within twenty-five years the whole theory was worked out, and a multibillion-dollar global industry of option trading had emerged.

Journal Of The Royal Society Interface

Author :
ISBN : STANFORD:36105123660396
Genre : Physical sciences
File Size : 82. 18 MB
Format : PDF, Mobi
Download : 638
Read : 281

Download Now Read Online



Control Theory In Physics And Other Fields Of Science

Author : Michael Schulz
ISBN : 3540295143
Genre : Mathematics
File Size : 80. 36 MB
Format : PDF, Kindle
Download : 520
Read : 875

Download Now Read Online


This book provides an introduction to the analysis and the control mechanism of physical, chemical, biological, technological and economic models and their nonequilibrium evolution dynamics. Strong emphasis is placed on the foundation of variational principles, evolution and control equations, numerical methods, statistical concepts and techniques for solving or estimation of stochastic control problems for systems with a high degree of complexity. In particular, the central aim of this book is developing a synergetic connection between theoretical concepts and real applications. This book is a modern introduction and a helpful tool for researchers as well as for graduate students interested in econophysics and related topics.

Financial Modelling With Jump Processes

Author : Peter Tankov
ISBN : 9780203485217
Genre : Mathematics
File Size : 59. 90 MB
Format : PDF
Download : 383
Read : 697

Download Now Read Online


WINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematical tools required for applications can be intimidating. Potential users often get the impression that jump and Lévy processes are beyond their reach. Financial Modelling with Jump Processes shows that this is not so. It provides a self-contained overview of the theoretical, numerical, and empirical aspects involved in using jump processes in financial modelling, and it does so in terms within the grasp of nonspecialists. The introduction of new mathematical tools is motivated by their use in the modelling process, and precise mathematical statements of results are accompanied by intuitive explanations. Topics covered in this book include: jump-diffusion models, Lévy processes, stochastic calculus for jump processes, pricing and hedging in incomplete markets, implied volatility smiles, time-inhomogeneous jump processes and stochastic volatility models with jumps. The authors illustrate the mathematical concepts with many numerical and empirical examples and provide the details of numerical implementation of pricing and calibration algorithms. This book demonstrates that the concepts and tools necessary for understanding and implementing models with jumps can be more intuitive that those involved in the Black Scholes and diffusion models. If you have even a basic familiarity with quantitative methods in finance, Financial Modelling with Jump Processes will give you a valuable new set of tools for modelling market fluctuations.

An Introduction To Stochastic Differential Equations

Author : Lawrence C. Evans
ISBN : 9781470410544
Genre : Mathematics
File Size : 52. 54 MB
Format : PDF, ePub
Download : 205
Read : 665

Download Now Read Online


These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic. --Srinivasa Varadhan, New York University This is a handy and very useful text for studying stochastic differential equations. There is enough mathematical detail so that the reader can benefit from this introduction with only a basic background in mathematical analysis and probability. --George Papanicolaou, Stanford University This book covers the most important elementary facts regarding stochastic differential equations; it also describes some of the applications to partial differential equations, optimal stopping, and options pricing. The book's style is intuitive rather than formal, and emphasis is made on clarity. This book will be very helpful to starting graduate students and strong undergraduates as well as to others who want to gain knowledge of stochastic differential equations. I recommend this book enthusiastically. --Alexander Lipton, Mathematical Finance Executive, Bank of America Merrill Lynch This short book provides a quick, but very readable introduction to stochastic differential equations, that is, to differential equations subject to additive ``white noise'' and related random disturbances. The exposition is concise and strongly focused upon the interplay between probabilistic intuition and mathematical rigor. Topics include a quick survey of measure theoretic probability theory, followed by an introduction to Brownian motion and the Ito stochastic calculus, and finally the theory of stochastic differential equations. The text also includes applications to partial differential equations, optimal stopping problems and options pricing. This book can be used as a text for senior undergraduates or beginning graduate students in mathematics, applied mathematics, physics, financial mathematics, etc., who want to learn the basics of stochastic differential equations. The reader is assumed to be fairly familiar with measure theoretic mathematical analysis, but is not assumed to have any particular knowledge of probability theory (which is rapidly developed in Chapter 2 of the book).

A Guide To Monte Carlo Simulations In Statistical Physics

Author : David P. Landau
ISBN : 9781139480437
Genre : Science
File Size : 33. 14 MB
Format : PDF, Mobi
Download : 371
Read : 1323

Download Now Read Online


Dealing with all aspects of Monte Carlo simulation of complex physical systems encountered in condensed-matter physics and statistical mechanics, this book provides an introduction to computer simulations in physics. This edition now contains material describing powerful new algorithms that have appeared since the previous edition was published, and highlights recent technical advances and key applications that these algorithms now make possible. Updates also include several new sections and a chapter on the use of Monte Carlo simulations of biological molecules. Throughout the book there are many applications, examples, recipes, case studies, and exercises to help the reader understand the material. It is ideal for graduate students and researchers, both in academia and industry, who want to learn techniques that have become a third tool of physical science, complementing experiment and analytical theory.

Top Download:

New Books