design for reliability

Download Book Design For Reliability in PDF format. You can Read Online Design For Reliability here in PDF, EPUB, Mobi or Docx formats.

Design For Reliability

Author : Dev G. Raheja
ISBN : 9781118310038
Genre : Technology & Engineering
File Size : 45. 24 MB
Format : PDF, Mobi
Download : 978
Read : 805

Download Now Read Online


A unique, design-based approach to reliability engineering Design for Reliability provides engineers and managers with a range of tools and techniques for incorporating reliability into the design process for complex systems. It clearly explains how to design for zero failure of critical system functions, leading to enormous savings in product life-cycle costs and a dramatic improvement in the ability to compete in global markets. Readers will find a wealth of design practices not covered in typical engineering books, allowing them to think outside the box when developing reliability requirements. They will learn to address high failure rates associated with systems that are not properly designed for reliability, avoiding expensive and time-consuming engineering changes, such as excessive testing, repairs, maintenance, inspection, and logistics. Special features of this book include: A unified approach that integrates ideas from computer science and reliability engineering Techniques applicable to reliability as well as safety, maintainability, system integration, and logistic engineering Chapters on design for extreme environments, developing reliable software, design for trustworthiness, and HALT influence on design Design for Reliability is a must-have guide for engineers and managers in R&D, product development, reliability engineering, product safety, and quality assurance, as well as anyone who needs to deliver high product performance at a lower cost while minimizing system failure.

Design For Reliability

Author : Eric Bauer
ISBN : 1118075080
Genre : Computers
File Size : 53. 74 MB
Format : PDF, Kindle
Download : 596
Read : 756

Download Now Read Online


System reliability, availability and robustness are often not well understood by system architects, engineers and developers. They often don't understand what drives customer's availability expectations, how to frame verifiable availability/robustness requirements, how to manage and budget availability/robustness, how to methodically architect and design systems that meet robustness requirements, and so on. The book takes a very pragmatic approach of framing reliability and robustness as a functional aspect of a system so that architects, designers, developers and testers can address it as a concrete, functional attribute of a system, rather than an abstract, non-functional notion.

Design For Reliability

Author : Dana Crowe
ISBN : 9781420040845
Genre : Technology & Engineering
File Size : 40. 98 MB
Format : PDF, ePub
Download : 354
Read : 399

Download Now Read Online


Today's marketplace demands product reliability. At the same time, it places ever-increasing demands on products that push the limits of their performance and their functional life, and it does so with the expectation of lower per-unit product costs. To meet these demands, product design now requires a focused, streamlined, concurrent engineering process that will produce a product at the lowest possible cost in the least amount of time. Design for Reliability provides a systematic approach to the design process that is sharply focused on reliability and firmly based on the physics of failure. It imparts an understanding of how, why, and when to use the wide variety of reliability engineering tools available and offers fundamental insight into the total design cycle. Applicable from the idea phase of the product development cycle through product obsolescence, Design for Reliability (DfR) concepts integrated with reliability verification and analytical physics form a coherent stage gate/phase design process that helps ensure that a product will meet customers' reliability objectives. Whether you are a high-volume manufacturer of consumer items or a low volume producer of military commodities, your goal is the same: to bring a product to market using a process focused on designing out or mitigating potential failure modes prior to production release. Readers of Design for Reliability will learn to meet that goal and move beyond solidifying a basic offering to the marketplace to creating a true competitive advantage.

Fatigue Design And Reliability

Author : G. Marquis
ISBN : 9780080531618
Genre : Technology & Engineering
File Size : 64. 42 MB
Format : PDF, ePub
Download : 981
Read : 413

Download Now Read Online


This volume represents a selection of papers presented at the Third International Symposium on Fatigue Design, Fatigue Design 1998, held in Espoo, Finland, 26-29 May, 1998. One objective of this symposium series was to help bridge the gap that sometimes exists between researchers and engineers responsible for designing components against fatigue failure. The 21 selected papers provide an up-to-date survey of engineering practice and a preview of design methods that are advancing toward application. Reliability was selected as a key theme for FD'98. During the design of components and structures, it is not sufficient to combine mean material properties, average usage parameters, and pre-selected safety factors. The engineer must also consider potential scatter in material properties, different end users, manufacturing tolerances and uncertainties in fatigue damage models. Judgement must also be made about the consequences of potential failure and the required degree of reliability for the structure or component during its service life. Approaches to ensuring reliability may vary greatly depending on the structure being designed. Papers in this volume intentionally provide a multidisciplinary perspective on the issue. Authors represent the ground vehicle, heavy equipment, power generation, ship building and other industries. Identical solutions cannot be used in all cases because design methods must always provide a balance between accuracy and simplicity. The point of balance will shift depending on the type of input data available and the component being considered.

Design Reliability

Author : B.S. Dhillon
ISBN : 1420050141
Genre : Technology & Engineering
File Size : 83. 46 MB
Format : PDF, ePub, Mobi
Download : 328
Read : 1291

Download Now Read Online


As engineering systems become more and more complex, industry has recognized the importance of system and product reliability and places ever increasing emphasis on it during the design phase. Despite its efforts, however, industry continues to lose billions of dollars each year because of unexpected system failures. Therefore, it becomes increasingly important for designers and engineers to have a solid grounding in reliability engineering and keep abreast of new developments and research results.

Design For Reliability In Deepwater Floating Drilling Operations

Author : L. M. Harris
ISBN : STANFORD:36105031617900
Genre : Technology & Engineering
File Size : 89. 26 MB
Format : PDF, ePub, Docs
Download : 766
Read : 463

Download Now Read Online



Robust Engineering Design By Reliability With Emphasis On Mechanical Components Structural Reliability

Author : Dimitri Kececioglu
ISBN : 193207807X
Genre : Technology & Engineering
File Size : 61. 26 MB
Format : PDF, Docs
Download : 614
Read : 1166

Download Now Read Online


? Methods of synthesizing distributions ? Methods of determining the failure governing stress and strength distributions? Quantification of the Reliability and Unreliability of components and structural members using the modern failure governing stress and strength distributions interference approach? A unified look at the concepts of safety factors, safety margins and the designed-in Reliability? Special methods, including Monte Carlo simulation, to predict the Reliability of mechanical components and structures? The process of Failure Modes, Effects and Criticality Analysis (FAMECA)? Numerous examples of applications and guidelines for the implementation of the EDBR methodology--------------------------------------------------------------------------------This new book is the first to provide an advanced methodology to achieve optimum designed-in reliability of products and components. All steps are clearly illustrated by worked practical examples. Specific applications feature mechanical components and structural members widely used today. The implementation of this methodology will enable the engineer to design products and components with superior reliability, maintainability, safety, and value. --------------------------------------------------------------------------------TABLE OF CONTENTS Problems and reference sections are included in each chapter. Preface Chapter 1--Introduction? The Need for Engineering Design by Reliability? Differences between Mechanical and Electronic Reliability Prediction Methods? Available Mechanical Reliability Prediction Methods? Comparison of the Conventional Design Methodology and the "Engineering Design by Reliability" Methodology? The Safety Factor and Safety Margin Concepts in Design versus the Reliability Concept Chapter 2--Fifteen-Step Reliability Prediction and the "Robust Engineering Design by Reliability" Methodology? Introduction? Definition of Reliability? Fifteen-Step Methodology Chapter 3--The Central Limit Theorem, And The Moments And The Monte Carlo Simulation Methods Of Synthesizing Distributions? The Sum of Many Independent and Indentically Distributed (IID) Random Variables? The Central Limit Theorem? The Method of Moments? Interpolation Procedure for z''a Tables? The Monte Carlo Simulation Method? Comments on Methods for Synthe-Sizing Distributions Chapter 4--Methods of Determining the Failure Governing Stress Distribution? Determination of the Load Characteristics and The Associated Stress Distribution? Procedure for Determining the Failure Governing Stress Distribution? Methods of Synthesizing the Failure Governing Stress Distribution? Binary Synthesis of Distributions? Generation of System Moments? Monte Carlo Simulation Chapter 5--Methods of Determining the Failure Governing Strength Distribution? Distribution of the Material Properties and the Associated Strength Distribution? Data Generation and Determination of the Distributions of the Material Strength Properties? Procedure for Determining the Failure Governing Strength Distribution? Binary Synthesis of Normal Distributions Method? Generating System Moments Method? Monte Carlo Simulation Method Chapter 6--Illustrated Methods of Calculating the Reliability of Components? Introduction? The General Reliability Expression to Be Used When f(S) and f(s) Are Both Neither Normal Nor Lognormally Distributed? Numerical Integration? Mellin Transforms? Monte Carlo Simulation? Normal Failure Governing Stress and Strength Distributions? Lognormal Failure Governing Stress and Strength Distributions? Reliability of Components Given the Failure Governing Stress Distribution and a Discrete, Fixed Failure Governing Strength? Reliability of Components Given a Discrete Failure Governing Stress and the Failure Governing Strength Distribution? Reliability of Components Given Discrete Failure Governing Stress and Strength? Reliability When f(s) and f(S) Are Both Normal, and When s=S? Reliability When Failure Governing Stress and Strength Are Both Distributed? Reliability of Components Subjected To Fatigue Given a Fixed Alternating Stress Level, the Corresponding Cycles-To-Failure Distribution and a Specific Life Requirement? Reliability When Operating an Additional Number of Cycles Having Already Completed a Specific Number of Cycles of Operation at a Specific Alternating Stress Level and the Associated F(N)? Reliability Given the Distribution of the Duty Cycles of Operation of Identical Components and Their Cycles-To-Failure Distribution under Fatigue Loading? Reliability for a Specific Life Given the Failure Governing Strength Distribution for That Life and a Constant Maximum Alternating Stress under Fatigue Loading? Reliability for a Specific Life Given the Failure Governing Strength Distribution for That Life and the Failure Governing Maximum Alternating Stress Distribution for That Life under Fatigue Loading? Reliability for Completing An Additional Number of Cycles, Having Already Completed A Specific Number of Cycles of Operation Successfully, Given, f(Sn1), f(sn1), f(Sn1+n) andf(sn1+n) under Fatigue Loading? Reliability with Combined Alternating and Mean Stress under Fatigue Loading Chapter 7--Determination of the Designed-In Reliability Confidence Limit at A Specified Confidence Level? Introduction? Determination of Mechanical Reliability? Determination of the Lower One-Sided Confidence Limit on the Reliability? Calculating the Lower One-Sided Confidence Limit on the Reliability? Effect of Confidence Level on the Lower, One-Sided Confidence Limit on the Reliability? Effect of Sample Size on the Lower, One-Sided Confidence Limit on the Reliability? How to Design To a Reliability Goal at a Specified Confidence Level? Conclusions and Recommendations Chapter 8--Unreliability and Reliability Determination by the Stress/Strength Distributions'' Interference Approach? Introduction? The Failure Probability and Failure Function? Failure Function Determination? The Survival Function? Determination of Reliability or Unreliability by the Difference-Distribution Method? Conclusions Chapter 9--A Unified Look At Design Safety Factors, Safety Margins And Measures Of Reliability? Introduction? Failure Governing Stress and Strength, and Their Distributions? Safety Factors? Safety Margins? Measures of Reliability? ConclusionsChapter 10--Comparative Accuracy of Evaluating Reliability Using Simpson''s Rule, the Trapezoidal Rule and the Gauss-Legendre Method? Introduction? Simpson''s Rule, Trapezoidal Rule, and Gauss-Legendre Methods? Methodology for Evaluating Reliability? Comparison of the Accuracy? Conclusions Chapter 11--Exact and Easy To Obtain Solutions for the Prediction of the Reliability of Mechanical Components and Structural Members? Introduction? Lognormal Failure Governing Stress and Strength Distributions? Gamma Failure Governing Stress and Strength Distributions? Exponential Failure Governing Stress and Normal Failure Governing Strength Distributions? Exponential Failure Governing Stress and Truncated Normal Failure Governing Strength Distributions? Normal Failure Governing Stress and Exponential Failure Governing Strength Distributions? Truncated Normal Failure Governing Stress and Exponential FailureGoverning Strength Distributions

Top Download:

New Books