# beginning r an introduction to statistical programming

**Download Book Beginning R An Introduction To Statistical Programming in PDF format. You can Read Online Beginning R An Introduction To Statistical Programming here in PDF, EPUB, Mobi or Docx formats.**

## Beginning R

**Author :**Larry Pace

**ISBN :**9781484203736

**Genre :**Computers

**File Size :**63. 50 MB

**Format :**PDF, Docs

**Download :**373

**Read :**308

Beginning R, Second Edition is a hands-on book showing how to use the R language, write and save R scripts, read in data files, and write custom statistical functions as well as use built in functions. This book shows the use of R in specific cases such as one-way ANOVA analysis, linear and logistic regression, data visualization, parallel processing, bootstrapping, and more. It takes a hands-on, example-based approach incorporating best practices with clear explanations of the statistics being done. It has been completely re-written since the first edition to make use of the latest packages and features in R version 3. R is a powerful open-source language and programming environment for statistics and has become the de facto standard for doing, teaching, and learning computational statistics. R is both an object-oriented language and a functional language that is easy to learn, easy to use, and completely free. A large community of dedicated R users and programmers provides an excellent source of R code, functions, and data sets, with a constantly evolving ecosystem of packages providing new functionality for data analysis. R has also become popular in commercial use at companies such as Microsoft, Google, and Oracle. Your investment in learning R is sure to pay off in the long term as R continues to grow into the go to language for data analysis and research. What You Will Learn: How to acquire and install R Hot to import and export data and scripts How to analyze data and generate graphics How to program in R to write custom functions Hot to use R for interactive statistical explorations How to conduct bootstrapping and other advanced techniques

## Beginning R

**Author :**Larry Pace

**ISBN :**9781430245544

**Genre :**Computers

**File Size :**30. 63 MB

**Format :**PDF, ePub, Mobi

**Download :**308

**Read :**1278

Beginning R: An Introduction to Statistical Programming is a hands-on book showing how to use the R language, write and save R scripts, build and import data files, and write your own custom statistical functions. R is a powerful open-source implementation of the statistical language S, which was developed by AT&T. R has eclipsed S and the commercially-available S-Plus language, and has become the de facto standard for doing, teaching, and learning computational statistics. R is both an object-oriented language and a functional language that is easy to learn, easy to use, and completely free. A large community of dedicated R users and programmers provides an excellent source of R code, functions, and data sets. R is also becoming adopted into commercial tools such as Oracle Database. Your investment in learning R is sure to pay off in the long term as R continues to grow into the go to language for statistical exploration and research. Covers the freely-available R language for statistics Shows the use of R in specific uses case such as simulations, discrete probability solutions, one-way ANOVA analysis, and more Takes a hands-on and example-based approach incorporating best practices with clear explanations of the statistics being done What youâ€™ll learn Acquire and install R Import and export data and scripts Generate basic statistics and graphics Program in R to write custom functions Use R for interactive statistical explorations Implement simulations and other advanced techniques Who this book is for Beginning R: An Introduction to Statistical Programming is an easy-to-read book that serves as an instruction manual and reference for working professionals, professors, and students who want to learn and use R for basic statistics. It is the perfect book for anyone needing a free, capable, and powerful tool for exploring statistics and automating their use. Table of ContentsPart I. Learning the R Language 1. Getting R and Getting Started 2. Programming in R 3. Writing Reusable Functions 4. Summary Statistics Part II. Using R for Descriptive Statistics 5. Creating Tables and Graphs 6. Discrete Probability Distributions 7. Computing Standard Normal Probabilities Part III. Using R for Inferential Statistics 8. Creating Confidence Intervals 9. Performing t Tests 10. Implementing One-Way ANOVA 11. Implementing Advanced ANOVA 12. Simple Correlation and Regression in R 13. Multiple Correlation and Regression in R 14. Logistic Regression 15. Performing Chi-Square Tests 16. Working in Nonparametric Statistics Part IV. Taking R to the Next Level 17. Using R for Simulation 18. Resampling and Bootstrapping 19. Creating R Packages 20. Executing R Packages

## Beginning R

**Author :**Larry Pace

**ISBN :**9781430245551

**Genre :**Computers

**File Size :**86. 9 MB

**Format :**PDF

**Download :**769

**Read :**1040

Beginning R: An Introduction to Statistical Programming is a hands-on book showing how to use the R language, write and save R scripts, build and import data files, and write your own custom statistical functions. R is a powerful open-source implementation of the statistical language S, which was developed by AT&T. R has eclipsed S and the commercially-available S-Plus language, and has become the de facto standard for doing, teaching, and learning computational statistics. R is both an object-oriented language and a functional language that is easy to learn, easy to use, and completely free. A large community of dedicated R users and programmers provides an excellent source of R code, functions, and data sets. R is also becoming adopted into commercial tools such as Oracle Database. Your investment in learning R is sure to pay off in the long term as R continues to grow into the go to language for statistical exploration and research. Covers the freely-available R language for statistics Shows the use of R in specific uses case such as simulations, discrete probability solutions, one-way ANOVA analysis, and more Takes a hands-on and example-based approach incorporating best practices with clear explanations of the statistics being done

## Beginning R

**Author :**Mark Gardener

**ISBN :**9781118239377

**Genre :**Computers

**File Size :**66. 49 MB

**Format :**PDF, ePub, Mobi

**Download :**812

**Read :**766

Conquer the complexities of this open source statistical language R is fast becoming the de facto standard for statistical computing and analysis in science, business, engineering, and related fields. This book examines this complex language using simple statistical examples, showing how R operates in a user-friendly context. Both students and workers in fields that require extensive statistical analysis will find this book helpful as they learn to use R for simple summary statistics, hypothesis testing, creating graphs, regression, and much more. It covers formula notation, complex statistics, manipulating data and extracting components, and rudimentary programming. R, the open source statistical language increasingly used to handle statistics and produces publication-quality graphs, is notoriously complex This book makes R easier to understand through the use of simple statistical examples, teaching the necessary elements in the context in which R is actually used Covers getting started with R and using it for simple summary statistics, hypothesis testing, and graphs Shows how to use R for formula notation, complex statistics, manipulating data, extracting components, and regression Provides beginning programming instruction for those who want to write their own scripts Beginning R offers anyone who needs to perform statistical analysis the information necessary to use R with confidence.

## An Introduction To Statistical Learning

**Author :**Gareth James

**ISBN :**9781461471387

**Genre :**Mathematics

**File Size :**36. 10 MB

**Format :**PDF

**Download :**361

**Read :**1076

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

## Software For Data Analysis

**Author :**John Chambers

**ISBN :**0387759360

**Genre :**Computers

**File Size :**44. 25 MB

**Format :**PDF, Docs

**Download :**507

**Read :**517

John Chambers turns his attention to R, the enormously successful open-source system based on the S language. His book guides the reader through programming with R, beginning with simple interactive use and progressing by gradual stages, starting with simple functions. More advanced programming techniques can be added as needed, allowing users to grow into software contributors, benefiting their careers and the community. R packages provide a powerful mechanism for contributions to be organized and communicated. This is the only advanced programming book on R, written by the author of the S language from which R evolved.

## A First Course In Statistical Programming With R

**Author :**W. John Braun

**ISBN :**9781139466530

**Genre :**Computers

**File Size :**77. 28 MB

**Format :**PDF, Docs

**Download :**453

**Read :**203

This is the only introduction you'll need to start programming in R, the open-source language that is free to download, and lets you adapt the source code for your own requirements. Co-written by one of the R Core Development Team, and by an established R author, this book comes with real R code that complies with the standards of the language. Unlike other introductory books on the ground-breaking R system, this book emphasizes programming, including the principles that apply to most computing languages, and techniques used to develop more complex projects. Learning the language is made easier by the frequent exercises and end-of-chapter reviews that help you progress confidently through the book. Solutions, datasets and any errata will be available from the book's web site. The many examples, all from real applications, make it particularly useful for anyone working in practical data analysis.